STBL Audit Report

Prepared by Cyfrin
Version 2.0

Lead Auditors
Okage
Stalin

September 10, 2025

https://cyfrin.io
https://twitter.com/0kage_eth
https://twitter.com/0xStalin

Contents

1 About Cyfrin
Disclaimer

Risk Classification
Protocol Summary
Audit Scope

Executive Summary

N~ o a &~ WwDN

Findings
7.1 Medium Risk o e e e e
7.1.1 Incorrect haircut asset value conversion in STBL_PT1_Issuer::generateMetaData
7.1.2 High centralization risk in STBL_USST: :bridgeBurn o v v v v v v v oo
7.1.3 Front-running attack on yield distribution allows potential theft of accumulated rewards
7.1.4 Arithmetic underflow in withdrawERC20 when there is a negative rebasing of asset tokens . .
7.2 Low Risk . . . e e e
7.2.1 Missing zero address checks in STBL_Register::setupAsset
7.2.2 Insufficient fee validation in STBL_Register: :setupAsset can cause underflow
7.2.3 Insufficient duration validation in STBL_Register: : setupAsset can lock user withdrawals . .
7.2.4 Disabling an asset via STBL_Register::disableAsset with active deposits can DOS user
withdrawals e
7.2.5 STBL_Register::addAsset does not check for non-empty assetname
7.2.6 Race condition at duration expiration boundary during withdrawals
7.2.7 Treasury cannot withdraw expired assets if NFT isdisabled
7.3 Informational e
7.3.1 Misleading ContractType field suggests that assets can be non ERC20 tokens
7.3.2 Missing event emissions for critical oracle parameterchanges
7.3.3 Mismatching variable naming for Metadata.depositBlock
7.3.4 CEl pattern violation in STBL_PT1_Vault::withdrawFees
7.3.5 Misleading inline comment in STBL_LT1_Issuer::withdrawExpired function
7.3.6 Anybody can deposit and withdraw on behalfofusers
7.4 GasOptimization e e
7.4.1 Unnecessary usage of _msgSender () to validate if caller is the Issuer on the STBL_PT1_-
YieldDistributor e e e e e e e

1 About Cyfrin

Cyfrin is a Web3 security company dedicated to bringing industry-leading protection and education to our partners
and their projects. Our goal is to create a safe, reliable, and transparent environment for everyone in Web3 and
DeFi. Learn more about us at cyfrin.io.

2 Disclaimer

The Cyfrin team makes every effort to find as many vulnerabilities in the code as possible in the given time but holds
no responsibility for the findings in this document. A security audit by the team does not endorse the underlying
business or product. The audit was time-boxed and the review of the code was solely on the security aspects of
the solidity implementation of the contracts.

3 Risk Classification

Impact: High | Impact: Medium | Impact: Low

Likelihood: High Critical High Medium
Likelihood: Medium | High Medium Low
Likelihood: Low Medium Low Low

4 Protocol Summary

STBL Protocol is a yield-bearing stablecoin platform that tokenizes Real World Assets (RWAs) through a dual-token
architecture. The protocol enables users to deposit yield-bearing assets like USDY (Ondo's yield-bearing USD)
and OUSG (Ondo Short-Term US Government Bond Token) and receive fungible stablecoin tokens alongside
yield-bearing NFTs.

The protocol supports two distinct asset categories: PT1 Assets (Principal Token - Type 1)

Designed for assets like USDY that appreciate through rebasing/compound interest Examples: USDY_PT1,
OUSG_PT1 Yield comes from asset price appreciation over time

LT1 Assets (Liquidity Token - Type 1)

Designed for assets with more complex yield mechanisms Examples: USDY_LT1, OUSG_LT1 Similar yield distri-
bution but different internal mechanics

5 Audit Scope

Following contracts were part of the scope for the current audit.
« STBL_OracleLib.sol
« STBL_LT1_lIssuer.sol
« STBL_LT1_Oracle.sol
« STBL_LT1_Vault.sol
« STBL_LT1_YieldDistributor.sol
STBL_OraclelLib.sol
« STBL_PT1_Issuer.sol

https://cyfrin.io

« STBL_PT1_Oracle.sol

« STBL_PT1_Vault.sol

« STBL_PT1_YieldDistributor.sol
« STBL_Core.sol

+ STBL_Register.sol

« STBL_AssetDefinitionLib.sol
« STBL_DecimalConverter.sol
« STBL_Decoder.sol

« STBL_MetadataL.ib.sol

+ STBL_Token.sol

« STBL_USST.sol

« STBL_YLD.sol

» Lock.sol

6 Executive Summary

Over the course of 10 days, the Cyfrin team conducted an audit on the STBL smart contracts provided by STBL.
In this period, a total of 18 issues were found.

STBL is a decentralized finance protocol that enables users to deposit various assets and receive fungible stable-
coin tokens (USST) alongside yield-bearing non-fungible tokens (YLD). The protocol employs a sophisticated fee
structure, yield distribution mechanism, and supports various asset lifecycles with time-based withdrawal restric-
tions.

Primary issues discovered during the audit included arithmetic underflows during negative rebasing of assets,
front-running MEV attacks around yield distrubution, incorrect asset value conversions based on oracle price and
high centralization risks in bridge burning functions. All reported issues were successfully resolved by the
protocol and verified by Cyfrin.

The audit revealed excellent test coverage throughout the protocol, including comprehensive fuzz testing imple-
mentations. Robust fuzz tests covering core functionality, asset lifecycles, registry operations, and token behaviors
significantly strengthening the protocol's security posture.

The protocol contains several crucial administrative functions that require careful governance and security consid-
erations. Some key administrative functions that significantly impact protocol users are:

» emergencyWithdraw: Allows emergency extraction of funds from the protocol
» disableAssets: Can disable specific assets, potentially affecting user withdrawals
* withdrawExpired: Enables treasury to withdraw expired user assets

In light of the above, we recommend establishing comprehensive documentation for operational procedures and
emergency response protocols. The security infrastructure for administrative wallets and deployment processes
should also be thoroughly reviewed and documented before mainnet launch.

https://github.com/USD-Pi-Protocol/contract.git
https://www.stbl.com/

Summary

Project Name STBL

Repository contract

Commit 568c9211c9cH. ..
Audit Timeline Aug 19th - Sep 1st
Methods Manual Review

Issues Found

Critical Risk

High Risk

Medium Risk

Low Risk

D |IN|[hd]O|O

Informational

Gas Optimizations | 1

Total Issues 18

Summary of Findings

[M-1] Incorrect haircut asset value conversion in STBL_PT1_Is- [Resolved
suer: :generateMetaData

[M-2] High centralization risk in STBL_USST: : bridgeBurn Resolved
[M-3] Front-running attack on yield distribution allows potential theft of accu- | Acknowledged
mulated rewards

[M-4] Arithmetic underflow in withdrawERC20 when there is a negative rebas- | Resolved
ing of asset tokens

[L-1] Missing zero address checks in STBL_Register: :setupAsset Resolved
[L-2] Insufficient fee validation in STBL_Register: : setupAsset can cause un- | Resolved
derflow

[L-3] Insufficient duration validation in STBL_Register: :setupAsset can lock | Resolved
user withdrawals

[L-4] Disabling an asset via STBL_Register::disableAsset with active de- | Resolved
posits can DOS user withdrawals

[L-5] STBL_Register: :addAsset does not check for non-empty asset name Resolved
[L-6] Race condition at duration expiration boundary during withdrawals Resolved
[L-7] Treasury cannot withdraw expired assets if NFT is disabled Resolved
[I-1] Misleading ContractType field suggests that assets can be non ERC20 | Resolved
tokens

[I-2] Missing event emissions for critical oracle parameter changes Resolved

https://github.com/USD-Pi-Protocol/contract.git
https://github.com/USD-Pi-Protocol/contract/blob/568c9211c9c17c01d5639c875637f247ac5df42c

[I-3] Mismatching variable naming for Metadata.depositBlock

Resolved

[I-4] CEl pattern violation in STBL_PT1_Vault: :withdrawFees Acknowledged
[I-5] Misleading inline comment in STBL_LT1_Issuer: :withdrawExpired func- | Resolved

tion

[I-6] Anybody can deposit and withdraw on behalf of users Acknowledged
[G-1] Unnecessary usage of _msgSender () to validate if caller is the Issuer | Resolved

on the STBL_PT1_YieldDistributor

7 Findings
7.1 Medium Risk

7.1.1 Incorrect haircut asset value conversion in STBL_PT1_Issuer::generateMetaData

Description: STBL_PT1_Issuer::generateMetaData (and its STBL_LT1_Issuer counterpart) uses the wrong
oracle conversion function when calculating haircutAmountAssetValue, resulting in mathematically incorrect
values being stored in NFT metadata. The function uses fetchForwardPrice() that expects the input
(MetaData.haircutAmount) to be in the asset currency but haircut amount is already converted into USD (when
applied on stableValueGross which is in USD terms).

The issue stems from a unit conversion error where USD amounts are incorrectly passed to a function expecting
asset amounts:

function generateMetaData(uint256 assetValue) internal view returns (YLD_Metadata memory MetaData) {
// ... other calculations ...

// @audit Step 1: Convert asset to USD using fetchForwardPRice
MetaData.stableValueGross = iSTBL_PT1_AssetOracle(AssetData.oracle)
.fetchForwardPrice(MetaData.assetValue);

// @audit Step 2: Calculate haircut in USD terms
MetaData = MetaData.calculateDepositFees(); // Sets haircutdmount in USD

// @audit BUG - Wrong conversion function used

MetaData.haircutAmountAssetValue = iSTBL_PT1_AssetOracle(AssetData.oracle)
.fetchForwardPrice (MetaData.haircutAmount); // Gaudit inverse of price needs to be used
V720
// @audit This expects ASSET AMOUNT but receives USD AMOUNT

Correct conversion here is by applying the inverse of the oracle price to get the haircut value in asset token
denomination.

Impact: While the core vault accounting logic is unaffected, haircutAmountAssetValue metadata is incorrect.
Off-chain systems reading metadata get wrong values.

Proof of Concept: Here is a mock calculation:

Step 1: stableValueGross = fetchForwardPrice(100e18)
= (110000000 * 100e18) / 1e8 = 110e18 USD

Step 2: haircutAmount = (110e18 * 500) / 10000 = 5.5e18 USD

Step 3 (WRONG): haircutAmountAssetValue = fetchForwardPrice(5.5e18)
= (110000000 * 5.5e18) / 1e8 = 6.05e18

Step 3 (CORRECT): haircutAmountAssetValue = fetchInversePrice(5.5e18)
= (5.5e18 * 1e8) / 110000000 = 5e18

Recommended Mitigation: Consider using the fetchInversePrice to calculate haircutAmountAssetValue
STBL: Fixed in commit 1adcif2.
Cyfrin: Verified.

7.1.2 High centralization risk in STBL_USST: :bridgeBurn

Description: Current implementation of STBL_USST: :bridgeBurn allows BRIDGE_ROLE to burn tokens from any
arbitrary address without user approval. This creates unnecessary centralization risk when a safer approach is
already demonstrated in the protocol's own STBL_Token contract.

https://github.com/USD-Pi-Protocol/contract/commit/1adc1f2d05dcbcee89826ab9b7d625642c0834bd

// STBL_USST.solfunction bridgeBurn(
address _from, // @audit can be any address
uint256 _amt,
bytes memory _data
) external whenNotPaused onlyRole(BRIDGE_ROLE) {
_burn(_from, _amt); // @audit Burns from arbitrary address without consent
emit BridgeBurn(_from, _amt, _data);

The above approach allows the BRIDGE_ROLE (initialized to the DEFAULT_ADMIN) to burn tokens from any address.
An alternate implementation already implemented in STBL_TOKEN is much safer:

// STBL_Token.sol
function bridgeBurn(uint256 _amt) external whenNotPaused onlyRole(BRIDGE_ROLE) {
_burn(_msgSender (), _amt); // Qaudit Only burns caller's (bridge's) own tokens

}

Impact: Bridge contract compromise can allow mass token burning in a single transaction. This also significantly
increases the trust assumptions and centralization risk around the bridge contract creating a single point of failure
for entire token ecosystem.

Recommended Mitigation: Consider using the STBL_Token code for implementing bridgeBurn functionality. Al-
ternatively, first transfer tokens from the caller into the contract and then burn them.

STBL: Fixed in commit a737746
Cyfrin: Verified.

7.1.3 Front-running attack on yield distribution allows potential theft of accumulated rewards

Description: Current yield distribution has following properties:

1. Periodic distribution - yield is calculated and distributed once every yieldDuration seconds. Onchain con-
tracts show that yieldDuration for assets is 2,592,000 (30 days).

2. Proportionate rewards - all depositors receive yield proportional to their stake size regardless of deposit
duration.

3. Predictable price changes - the 30-day distribution cycle coupled with external oracle updates allow MEV
hunters to create exploitation opportunities.

The distributeReward function allows rewards to be distributed once every yieldDuration Seconds and the
rewards are proportional to the stake amounts:

// STBL_LT1_YieldDistributor.sol

function distributeReward(uint256 reward) external {
// @audit once every yieldDuration seconds
if (previousDistribution + AssetData.yieldDuration >= block.timestamp)
revert STBL_Asset_YieldDurationNotReached(assetID, previousDistribution);

// @audit proportional distribution without time weighting
rewardIndex += (reward * MULTIPLIER) / totalSupply;
previousDistribution = block.timestamp;

The distributeYield function calculates price differential using the updated oracle prices:

function distributeYield() external {
AssetDefinition memory AssetData = registry.fetchAssetData(assetID);
uint256 differentialUSD = iCalculatePriceDifferentiation(); //@audit USD walue calculated based
— on latest price
if (differentialUSD > 0) {

https://github.com/USD-Pi-Protocol/contract/commit/a737746e3f136f6c83605228b81b23da23e27183
https://etherscan.io/address/0x120F72491DA96CD42ca116AA11caEe206a4a1668#readContract
https://etherscan.io/address/0x120F72491DA96CD42ca116AA11caEe206a4a1668#readContract

iSTBL_LT1_AssetYieldDistributor (AssetData.rewardDistributor)
.distributeReward(
yieldAssetValue.convertFrom18Decimals(
DecimalConverter.getTokenDecimals (AssetData.token)
)
);

The above design allows for the following attack vector (for simplicity, lets assume a 10% fees and Alice as the
only depositor)

- Alice deposits $100,000, receives NFT representing her stake

« Price appreciation accumulates over yield duration - 30 days (e.g., $10,000 in OUSG price gains or USDY
compound interest)

« Alice expects to receive ~$9,000 yield (after 10% protocol fees)

» Bob monitors previousDistribution + yieldDuration to identify the exact distribution window (Bob also
monitors the oracle updates and knows the price difference gives a significant upside on yield)

 Bob deposits $10,000,000 immediately before distributeYield is called

+ Distribution occurs proportionally. Bob captures the bulk of rewards even though Alice staked for the entire
30 days

Impact: Longer term depositors can systematically lose accumulated rewards to opportunitistic whales who are
OK to lock capital for yield duration.

Proof of Concept: Add the following test to STBL_Test.t.sol

VAL
* @notice Demonstrates the yield frontrunning attack
* @dev Shows how a whale can capture majority of yield rewards despite minimal stake duration
*/
function test_YieldMEVAttack() public {
// Test amounts
address alice = address(0x1001); // Long-term depositor
address bob = address(0x1002); // MEV attacker
uint256 aliceDeposit = 100000e18; // §100,000 equivalent
uint256 bobDeposit = 10000000e18; // $10,000,000 (whale deposit)

// Step 1: Alice deposits early and holds for the full period
console.log("--- Step 1: Alice (Long-term depositor) deposits $100k ---");

// Get LT1 contracts (using asset ID 2)

STBL_LT1_Issuer issuerContract = STBL_LT1_Issuer(getAssetIssuer(2));
STBL_LT1_Vault vaultContract = STBL_LT1_Vault(getAssetVault(2));
STBL_LT1_YieldDistributor yieldDistributorContract =

«— STBL_LT1_YieldDistributor(getAssetYieldDistributor(2));
STBL_LT1_TestOracle oracleContract = STBL_LT1_TestOracle(getAssetOracle(2));
STBL_LT1_TestToken token = STBL_LT1_TestToken(getAssetToken(2));

// Mint tokens to Alice and approve
vm.startPrank (admin) ;
token.mintVal(alice, aliceDeposit);
vm.stopPrank() ;

vm.startPrank(alice);

token.approve (address(vaultContract), aliceDeposit);
uint256 aliceNftId = issuerContract.deposit(aliceDeposit);
vm. stopPrank() ;

console.log("Alice's NFT ID:", aliceNftId);

console.log("Alice's deposit amount:", aliceDeposit);

// Step 2: Wait almost full ytield duration and generate significant yield
console.log("--- Step 2: Wait 29 days, generate significant yield ---");

// Get current yield duration from asset config
AssetDefinition memory assetData = registry.fetchAssetData(2);
uint256 yieldDuration = assetData.yieldDuration;
console.log("Yield duration (seconds):", yieldDuration);

// Fast forward most of the duration (leave small window for Bob)

uint256 timeToWait = yieldDuration - 86400; // 1 day before yield can be distributed
vm.warp(block.timestamp + timeToWait);

console.log("Time advanced by:", timeToWait, "seconds (729 days)");

// Simulate significant price apprectation
uint256 initialPrice = oracleContract.fetchPrice();
console.log("Initial oracle price:", initialPrice);

// Generate 10} price appreciation (1000 * 0.01 = 10)
for(uint256 i = 0; i < 1000; i++) {
oracleContract.setPrice();

}

uint256 appreciatedPrice = oracleContract.fetchPrice();

console.log("Final oracle price:", appreciatedPrice);

console.log("Price appreciation:", ((appreciatedPrice - initialPrice) * 100) / initialPrice,
N ll%ll);

// Step 3: Bob monitors and deposits just before yield distribution window
console.log("--- Step 3: Bob monitors yield distribution window ---");

// Bob waits until yield can be distributed
vm.warp(block.timestamp + 86401); // Now at yieldDuration ezactly
console.log("Advanced to yield distribution window");

// Bob deposits whale amount right before distribution
vm.startPrank (admin) ;

token.mintVal(bob, bobDeposit) ;

vm.stopPrank() ;

vm.startPrank (bob) ;

token.approve (address(vaultContract), bobDeposit);
uint256 bobNftId = issuerContract.deposit(bobDeposit);
vm.stopPrank() ;

console.log("Bob's NFT ID:", bobNftId);
console.log("Bob deposits 100x more capital than Alice:", bobDeposit);

// Step 4: Check distribution ratios before yield distribution
console.log("--- Step 4: Analyzing stake distribution ---");

(uint256 aliceStake,,,) = yieldDistributorContract.stakingData(aliceNftId);
(uint256 bobStake,,,) = yieldDistributorContract.stakingData(bobNftId);
uint256 totalStake = yieldDistributorContract.totalSupply();

console.log("Alice stake:", aliceStake);
console.log("Bob stake:", bobStake);
console.log("Total stake:", totalStake);

uint256 aliceSharePct = (aliceStake * 100) / totalStake;
uint256 bobSharePct = (bobStake * 100) / totalStake;
console.log("Alice will receive:", aliceSharePct, ", of yield");

console.log("Bob will receive:", bobSharePct, ") of yield");

// Step 5: Trigger yield distribution
console.log("--- Phase 5: Yield Distribution ---");

uint256 expectedYield = vaultContract.CalculatePriceDifferentiation();
console.log("Expected yield amount:", expectedYield);

if (expectedYield > 0) {
// Treasury distributes yield
vm.prank (treasury) ;
vaultContract.distributeYield();

console.log("Yield distributed");
}

// Phase 6: Analyze unfair results
console.log("--- Step 6: Attack Results ---");

uint256 aliceRewards = yieldDistributorContract.calculateRewardsEarned(aliceNftId) ;
uint256 bobRewards = yieldDistributorContract.calculateRewardsEarned (bobNftId) ;
uint256 totalRewards = aliceRewards + bobRewards;

console.log("Alice earned rewards:", aliceRewards);
console.log("Bob earned rewards:", bobRewards) ;

if (totalRewards > 0) {
uint256 alicePct = (aliceRewards * 100) / totalRewards;
uint256 bobPct = (bobRewards * 100) / totalRewards;

console.log("UNFAIR DISTRIBUTION RESULTS:");
console.log("Alice (30-day holder):", alicePct, "} of rewards");
console.log("Bob (last-minute attacker):", bobPct, "} of rewards");

// Verify attack succeeded
assertTrue(bobRewards > aliceRewards, "MEV attack failed - Bob should earn more");

Recommended Mitigation: Consider distributing yield more frequently - higher the frequency, lesser is the MEV
possibility. We recommend atleast a weekly frequency to largely mitigate economic incentives for such an attack.

STBL: Acknowledged. This we will handled it via configuration and keep it in mind while setting config for yield
duration.

Cyfrin: Acknowledged.

7.1.4 Arithmetic underflow in withdrawERC20 when there is a negative rebasing of asset tokens

Description: The vault's accounting is based on the premise that the price of the underlying collateral will grow in
perpetuity. While the underlying collateral has the lowest risks, capital is still susceptible to risk, especially when
bonds are sold before maturity. For eg., if ONDO is ever forced to sell underlying bonds at market price and the
bond's price is lower than the time they were purchased, that will cause a loss that will most likely mean a negative
rebase on the price of USDY or oUSG.

The vault tracks deposits using deposit-time pricing but calculates withdrawals using current market pricing. When
prices decrease, the withdrawal calculation requires more tokens than the vault's accounting system has tracked
as available.

The consequences of a negative rebase (requiring more asset units for the same amount of USD) will impact the
withdrawal flow when subtracting the withdrawAssetValue (and fee) from the VaultData.assetDepositNet,
withdrawals will hit an underflow on that operation because the amount of asset units that will be discounted will
be greater than the amount of asset units on the VaultData.assetDepositNet.

10

https://github.com/USD-Pi-Protocol/contract/blob/feat/upgradeable/contracts/Assets/LT1/STBL_LT1_Vault.sol#L221-L222

function withdrawERC20/(
address _to,
YLD_Metadata memory MetaData
) external isValidIssuer {
AssetDefinition memory AssetData = registry.fetchAssetData(assetID);

// Calculate Withdraw asset wvalue
uint256 withdrawAssetValue = iSTBL_LT1_AssetOracle(AssetData.oracle)
.fetchInversePrice(
((MetaData.stableValueNet + MetaData.haircutAmount) -
MetaData.withdrawfeeAmount)
); //Caudit gets the latest price -> if price is negative withdrawdssetValue can be greater
— than assetDepositlet

VaultData.assetDepositNet -= (withdrawAssetValue +
withdrawFeeAssetValue); //Caudit if the above happens, assetDepositlNet will underflow

Impact: Potential denial of service on user withdrawals in the even of negative rebasing of asset prices .

Proof of Concept: Add the following function to STBL_PT1_TestOracle

function decreasePriceByPercentage(uint256 basisPoints) external {
require(basisPoints <= 9999, "Cannot decrease more than 99.99%");
price = (price * (10000 - basisPoints)) / 10000;

Then add the following test to STBL_Test .sol:

/// @notice Test deposit -> large price decrease -> attempted yield distribution -> withdrawal
/// @dev This tests accounting integrity under negative price movements and potential underflow

— risks
function test_DepositWithdrawlPctPriceDecrease() public {
console.log("=== 1} PRICE DECREASE TEST ===");

// Get contracts

STBL_PT1_TestToken assetToken = STBL_PT1_TestToken(getAssetToken(1));

STBL_PT1_Issuer stblPTiIssuer = STBL_PT1_Issuer(getAssetIssuer(1));

STBL_PT1_Vault stblPT1Vault = STBL_PT1_Vault(getAssetVault(1));

STBL_PT1_TestOracle stblPT1TestOracle = STBL_PT1_TestOracle(getAssetOracle(1));
STBL_PT1_YieldDistributor yieldDist = STBL_PT1_YieldDistributor(getAssetYieldDistributor(1));

// === PHASE 0: ENSURE VAULT LIQUIDITY ===

// Add significant extra tokens directly to wvault to ensure liquidity

// This prevents withdrawal failures due to insufficient vault balance after price drop
console.log("--- PHASE O: ENSURE VAULT LIQUIDITY ---");

uint256 extraliquidity = 100000e6; // 100,000 eztra tokens

vm.startPrank (admin) ;

assetToken.mintVal (address(stblPT1Vault), extraliquidity);

vm. stopPrank() ;

// Setup treasury
vm.startPrank(admin) ;
registry.setTreasury(admin) ;
vm.stopPrank() ;

11

// === PHASE 1: INITIAL DEPOSIT ===
console.log("--- PHASE 1: DEPOSIT ---");
uint256 depositAmount = 10000e6;

vm.startPrank (useri) ;
assetToken.approve (address (stblPT1Vault), depositAmount) ;
uint256 nftId = stblPT1Issuer.deposit(depositAmount);

vm. stopPrank() ;

// Log initial state

console.log("Initial deposit NFT ID:", nftId);

console.log("Initial oracle price:", stblPT1TestOracle.fetchPrice());
console.log("Initial vault token balance:", assetToken.balanceOf (address(stblPT1Vault)));
console.log("User USST balance:", usst.balanceOf (userl));

// Get initial metadata and wvault state
YLD_Metadata memory initialMetadata = yld.getNFTData(nftId);
VaultStruct memory initialVaultData = stblPT1Vault.fetchVaultData();

console.log("Asset value:", initialMetadata.assetValue);
console.log("Stable value net:", initialMetadata.stableValueNet);
console.log("Initial vault asset deposit net:", initialVaultData.assetDepositNet);

console.log("Initial vault deposit value USD:", initialVaultData.depositValueUSD);

// === PHASE 2: ADVANCE TIME FOR YIELD ELIGIBILITY ===

console.log("\n--- PHASE 2: ADVANCE TIME FOR YIELD ELIGIBILITY ---");
vm.warp(block.timestamp + initialMetadata.Fees.yieldDuration + 1);
console.log("Advanced time by:", initialMetadata.Fees.yieldDuration + 1, "seconds");

// === PHASE 3: LARGE PRICE DECREASE ===
console.log("\n--- PHASE 3: LARGE PRICE DECREASE ---");

uint256 initialPrice = stblPTiTestOracle.fetchPrice();
console.log("Price before decrease:", initialPrice);

// Simulate 10/ price decrease
stblPT1TestOracle.decreasePriceByPercentage (100);

uint256 newPrice = stblPT1TestOracle.fetchPrice();

console.log("Price after decrease:", newPrice);

console.log("Percentage change:", stblPT1TestOracle.calculatePercentageChange(initialPrice,
< newPrice));

// === PHASE J: CHECK YIELD CALCULATION AFTER PRICE DECREASE ===
console.log("\n--- PHASE 4: YIELD CALCULATION AFTER PRICE DECREASE ---");

// Check wault state before potential yield distribution

VaultStruct memory preYieldVaultData = stblPT1Vault.fetchVaultData();

console.log("Vault asset deposit net (pre-yield attempt):", preYieldVaultData.assetDepositNet);
console.log("Vault deposit value USD (pre-yield attempt):", preYieldVaultData.depositValueUSD);

// Calculate price differential - should be 0 for price decrease
uint256 priceDifferential = stblPT1Vault.CalculatePriceDifferentiation();
console.log("Price differential calculated:", priceDifferential);

// Verify that no yield ts distributed when price decreases
assertEq(priceDifferential, 0, "Price differential should be O when price decreases");

// Attempt yield distribution - should be a mo-op
vm.startPrank (admin) ;
stblPT1Vault.distributeYield();

vm. stopPrank() ;

// Check vault state after yield distribution attempt

12

VaultStruct memory postYieldVaultData = stblPT1Vault.fetchVaultData();
console.log("Vault asset deposit net (post-yield attempt):",

«— postYieldVaultData.assetDepositNet) ;

console.log("Vault yield fees collected:", postYieldVaultData.yieldFees);

// Verify no changes occurred during yteld distribution
assertEq(postYieldVaultData.assetDepositNet, preYieldVaultData.assetDepositNet, "assetDepositNet
— should not change");

assertEq(postYieldVaultData.yieldFees, preYieldVaultData.yieldFees, "yieldFees should not

— change");

// === PHASE 5: WITHDRAWAL UNDER DECREASED PRICE CONDITIONS ===
console.log("\n--- PHASE 5: WITHDRAWAL UNDER DECREASED PRICE ---");

// Check if user can still withdraw when asset price has decreased
uint256 usstBalance = usst.balanceOf (userl);
console.log("USST balance before withdrawal:", usstBalance);

vm.startPrank (useri) ;
usst.approve (address(usst), usstBalance);
yld.setApprovalForAll (address(yld), true);

uint256 preWithdrawVaultBalance = assetToken.balanceOf (address(vault));
uint256 preWithdrawUserBalance = assetToken.balanceOf (useri);
console.log("Vault balance before withdrawal:", preWithdrawVaultBalance);
console.log("User balance before withdrawal:", preWithdrawUserBalance);

// Attempt withdrawal
vm.expectRevert();
stblPT1Issuer.withdraw(nftId, useril);
vm.stopPrank() ;

Recommended Mitigation: Consider modifying withdrawERC20 to prevent underflows by capping withdrawals to
available accounting balance:

function withdrawERC20(address _to, YLD_Metadata memory MetaData) external isValidIssuer {
AssetDefinition memory AssetData = registry.fetchAssetData(assetID);

uint256 withdrawAssetValue = iSTBL_PT1_AssetOracle(AssetData.oracle)
.fetchInversePrice(
((MetaData.stableValueNet + MetaData.haircutAmount) - MetaData.withdrawfeeAmount)
)

uint256 withdrawFeeAssetValue = iSTBL_PT1_AssetOracle(AssetData.oracle)
.fetchInversePrice(MetaData.withdrawfeeAmount) ;

uint256 totalWithdrawal = withdrawAssetValue + withdrawFeeAssetValue;

// @audit Cap withdrawal to available balance
if (VaultData.assetDepositNet < totalWithdrawal) {
uint256 availableWithdrawal = VaultData.assetDepositNet > withdrawFeeAssetValue
? VaultData.assetDepositNet - withdrawFeeAssetValue
: 03

withdrawAssetValue = availableWithdrawal;
VaultData.assetDepositNet = 0; //C@audit effectively force this to 0

} else {
VaultData.assetDepositNet -= totalWithdrawal;
}

13

// Rest of function continues normally. ..

}

STBL: Fixed in commit c540943

Cyfrin: Verified. We note that in the unlikely event of negative rebasing, the current fix reverts when vault becomes
insolvent - however, in such a scenario this fix allows early users to withdraw (before insolvency occurs) while it
causes denial of service for later users attempting withdrawal.

14

https://github.com/USD-Pi-Protocol/contract/commit/c54094363b196b534c9c36d563851dff31fe2975

7.2 Low Risk
7.2.1 Missing zero address checks in STBL_Register: :setupAsset

Description: Several asset addresses are initialized without zero address checks in STBL_Register: :setupAsset

* _contractAddr
* _issuanceAddr
e _distAddr

* _vaultAddr

* _oracle

Notably, the same variables when set via their respective setter functions, eg,. setOracle have these validations.
It is also important to note that an asset can only be setup once.

Recommended Mitigation: Consider adding zero address checks in the setupAsset
STBL: Fixed in commit a737746
Cyfrin: Verified.

7.2.2 Insufficient fee validation in STBL_Register: :setupAsset can cause underflow

Description: The STBL_Register: :setupAsset and STBL_Register: :setFees functions validate individual fees
but ignore their cumulative impact. Consider the following logic in STBL_Metadatalib.calculateDepositFees
where the depositfeeAmount, haircutAmount and insurancefeeAmount are calculated on the gross stable value:

function calculateDepositFees(YLD_Metadata memory data) internal pure returns (YLD_Metadata memory) {
// All deposit-time fees calculated on same base (stablelValueGross)
data.depositfeeAmount = (data.stableValueGross * data.Fees.depositFee) / 10000;
data.haircutAmount = (data.stableValueGross * data.Fees.hairCut) / 10000;
data.insurancefeeAmount = (data.stableValueGross * data.Fees.insuranceFee) / 10000;
data.withdrawfeeAmount = (data.stableValueGross * data.Fees.withdrawFee) / 10000;
return data; //Caudit depositfeedmount, haircutdmount and insurancefeedmount are calculated on
— stablelValueGross

Both the STBL_LT1_Issuer and STBL_PT1_Issuer contracts calculate the net stable value as follows:

MetaData.stableValueNet = (MetaData.stableValueGross -
(MetaData.depositfeeAmount +
MetaData.haircutAmount +
MetaData.insurancefeeAmount)) ;

This would mean that if the sum of all fees in basis points exceeds 10000, the metadata logic will always revert
when computing the net stable value.

Impact: A combination of fees where the sum of deposit fee, hair cut and insurance fee exceeds 10000 can cause
underflow in net stable value calculation.

Recommended Mitigation: Consider introducing a cumulative check in the STBL_Register: :setupAsset and
STBL_Register: :setFees functions.

STBL: Fixed in commit 1adc1f2
Cyfrin: Verified.

15

https://github.com/USD-Pi-Protocol/contract/commit/a737746e3f136f6c83605228b81b23da23e27183
https://github.com/USD-Pi-Protocol/contract/commit/1adc1f2d05dcbcee89826ab9b7d625642c0834bd

7.2.3 Insufficient duration validation in STBL_Register: :setupAsset can lock user withdrawals

Description: Lack of duration validation in STBL_Register: :setupAsset and STBL_Register::setDurations
allows asset configurations where yieldDuration > duration, creating mathematically impossible withdrawal
conditions that lock user funds.

The withdrawal logic requires users to wait at least yieldDuration while also withdrawing before duration expires.
When yieldDuration > duration, no valid time window exists for user withdrawals.

The iWithdraw function in STBL_LT1_Issuer has the following checks

function iWithdraw(uint256 _tokenID, address _sender) internal isSetupDone {
YLD_Metadata memory MetaData = iSTBL_YLD(registry.fetchYLDToken()) .getNFTData(_tokenID) ;
// code. .

//ensures that users can't withdraw after duration has passed
if ((MetaData.depositBlock + MetaData.Fees.duration) < block.timestamp)
revert STBL_Asset_WithdrawDurationNotReached(assetID, _tokenID);

//ensures that users must watt for yield duration to withdraw assets
if (
(MetaData.depositBlock + MetaData.Fees.yieldDuration) >
block.timestamp
) revert STBL_Asset_YieldDurationNotReached(assetID, _tokenID);

// @audit withdrawal proceeds only if BOTH conditions are false...
//C@audit when yieldDuration > duration, no withdrawal window exists for users

Impact: Incorrectly configured asset durations can prevent user withdrawals.

Recommended Mitigation: Consider adding duration relationship validation in setupAsset and setDurations
STBL: Fixed in commit c540943

Cyfrin: Verified.

7.2.4 Disabling an asset via STBL_Register: :disableAsset With active deposits can DOS user withdrawals

Description: The STBL_Register: :disableAsset does not check for active deposits before disabling an asset,
creating a Denial of Service (DOS) condition where users cannot withdraw their deposited funds.

STBL_Register: :disableAsset only checks if the asset is currently enabled but ignores whether there are active
user deposits:

// STBL_Register.sol - disabledsset()
function disableAsset(uint256 _id) external onlyRole(REGISTER_ROLE) {
if (assetDatal[_id].status != AssetStatus.ENABLED)
revert STBL_AssetNotActive();
assetData[_id] .status = AssetStatus.DISABLED; // Caudit does mot check for active deposits
emit AssetStateUpdateEvent(_id, true);

However, the withdrawal flow requires the asset to be in ENABLED status to complete successfully. The STBL_-
Core: :exit function uses the isValidIssuer modifier which checks asset status:

// STBL_Core.sol
modifier isValidIssuer(uint256 _assetID) {
AssetDefinition memory AssetData = registry.fetchAssetData(_assetID);
if (!AssetData.isIssuer(_msgSender())) revert STBL_UnauthorizedIssuer();
if (!AssetData.isActive()) revert STBL_AssetDisabled(_assetID); // Gaudit blocks exit on disabled
— assets

-

16

https://github.com/USD-Pi-Protocol/contract/commit/c54094363b196b534c9c36d563851dff31fe2975

function exit(uint256 _assetID, address _from, uint256 _tokenID, uint256 _value)
external isValidIssuer(_assetID) { // Qaudit Modifier prevents exit on disabled assets
// ... burn tokens and decrement deposits

Impact: Disabled asset with active deposits prevents user withdrawals.

Recommended Mitigation: Consider preventing disabling of assets with active deposits.
STBL: Acknowledged.

Cyfrin: Acknowledged.

7.2.5 STBL_Register::addAsset does not check for non-empty asset name

Description: STBL_Register::setupAsset allows an assets to be created with empty names. However, else-
where in the code, the STBL_AssetDefinitionLib: :isValid function marks an an asset with empty name field as
invalid. This creates an inconsistency where assets can be successfully created and enabled in the protocol but
would fail validation checks via the isvalid function.

// STBL_Register.sol - adddsset function
function addAsset(
string memory _name, // @audit No wvalidation on name field
string memory _desc,
uint8 _type,
bool _aggType
) external onlyRole(REGISTER_ROLE) returns (uint256) {
unchecked {
assetCtr += 1;
}
assetDatal[assetCtr].id = assetCtr;
assetDatalassetCtr] .name = _name; // @audit Can be empty string
assetDatalassetCtr] .description = _desc;
assetDatalassetCtr] .contractType = _type;
assetDatalassetCtr].isAggreagated = _aggType;
assetDatal[assetCtr] .status = AssetStatus.INITIALIZED;

emit AddAssetEvent (assetCtr, assetDatal[assetCtr]);
return assetCtr;

isValid function marks this asset invalid:

// STBL_AssetDefinitionLib.sol
function isValid(AssetDefinition memory asset) internal pure returns (bool) {
return
asset.id != 0 &&
bytes(asset.name).length > 0 && // Requires non-empty name
asset.token != address(0) &&

asset.issuer != address(0) &&
asset.rewardDistributor != address(0) &&
asset.vault != address(0);

The isvalid() function is currently unused in the main protocol contracts but is imported in test files, suggesting
it was intended for validation but never properly integrated into the protocol flow.

Impact: Inconsistent validation logic and potential off-chain integration issues.

Recommended Mitigation: Consider adding name validation to addAsset or remove name requirement from
isValid

STBL: Fixed in commit 4a187a5

17

https://github.com/USD-Pi-Protocol/contract/commit/4a187a54fa0f5e268f4fb43305e88e37ed512c08

Cyfrin: Verified.

7.2.6 Race condition at duration expiration boundary during withdrawals

Description: The STBL_LT1_Issuer contract contains inconsistent boundary condition logic in the withdrawal
validation checks that creates a race condition when block.timestamp == depositBlock + duration.

In the iWithdraw() function (user withdrawal):

if ((MetaData.depositBlock + MetaData.Fees.duration) < block.timestamp)
revert STBL_Asset_WithdrawDurationNotReached(assetID, _tokenID);

In the withdrawExpired () function (protocol withdrawal):

if ((MetaData.depositBlock + MetaData.Fees.duration) > block.timestamp)
revert STBL_Asset_WithdrawDurationNotReached(assetID, _tokenID);

When depositBlock + duration == block.timestamp, both user and protocol can withdraw. This creates a race
condition where whichever transaction is mined first will succeed and the other reverts.

Impact: Users may have their valid withdrawal transactions fail unexpectedly due to protocol intervention at the
exact expiration moment

Proof of Concept: TBD.

Recommended Mitigation: Consider modifying boundary condition to give users clear priority at the expiration
timestamp.

// withdrawEzpired ()
if ((MetaData.depositBlock + MetaData.Fees.duration) >= block.timestamp) //@audit modify > to >=
revert STBL_Asset_WithdrawDurationNotReached(assetID, _tokenID);

STBL: Fixed.
Cyfrin: Verified.

7.2.7 Treasury cannot withdraw expired assets if NFT is disabled

Description: The STBL_LT1_Issuer::withdrawExpired function attempts to claim rewards for disabled NFTs, but
the STBL_LT1_YieldDistributor::claim function explicitly reverts when called on disabled NFTs.

In STBL_LT1_Issuer.withdrawExpired:

// If NFT is disabled then claim for yield is not dome
if (MetaData.isDisabled) {

iSTBL_LT1_AssetYieldDistributor (AssetData.rewardDistributor).claim(_tokenID);
}

In STBL_LT1_YieldDistributor.claim:

if (MetaData.isDisabled) revert STBL_YLDDisabled(id);

Impact: withdrawExpired will cause denial of service when metadata is disabled

Recommended Mitigation: Consider modifying the existing claim() function to allow issuer calls on disabled
NFTs:

function claim(uint256 id) external returns (uint256) {
// current logic

// @audit Allow issuer to claim for disabled NFTs, but block regular users
if (MetaData.isDisabled && msg.sender != AssetData.issuer) {
revert STBL_YLDDisabled(id);

}

18

}

STBL: Fixed in commit 1adc1f2
Cyfrin: Verified.

19

https://github.com/USD-Pi-Protocol/contract/commit/1adc1f2d05dcbcee89826ab9b7d625642c0834bd

7.3 Informational
7.3.1 Misleading ContractType field suggests that assets can be non ERC20 tokens

Description: The AssetDefinition struct includes a contractType field that suggests support for ERC20,
ERC721, and Custom asset types, but the entire codebase implicitly assumes all assets are ERC20 tokens. This
creates misleading documentation and potential integration issues.

The AssetDefinition struct defines a contractType field with multiple options:

// STBL_Structs.sol

struct AssetDefinition {
/7
/** @notice Type of contract (ERC20 = 0, ERC721 = 1, Custom = 2) */
uint8 contractType;

/.

}

However, throughout the codebase, all asset token interactions use the IERC20 interface, implicitly assuming the
contractType is ERC20.

Impact: Misleading documentation and potential confusion while setting up assets.

Recommended Mitigation: Consider removing the contractType field as it is inconsistent with the asset handling
in the codebase that implicitly assumes ERC20 type.

STBL: Acknowledged. This is kept in place for future use as there can be protocols which support erc 721 or
erc1155 based debt instrument.

Cyfrin: Acknowledged.

7.3.2 Missing event emissions for critical oracle parameter changes

Description: The oracle contracts (STBL_PT1_Oracle and STBL_LT1_Oracle) do not emit events when critical
parameters are modified by admin functions.

Following admin functions modify critical parameters but do not emit events:
* setPriceDecimals
* setPriceThreshold
* enablelracle
* disableOracle
Recommended Mitigation: Consider adding event declarations for the above functions.
STBL: Fixed in commit c540943
Cyfrin: Verified.

7.3.3 Mismatching variable naming for Metadata.depositBlock

Description: Based on the inline doc of ‘Metadata.depositBlock® implies it saves the block number when the
deposit was created, but in reality, this variable saves the timestamp.

Recommended Mitigation: Consider renaming the variable Metadata.depositBlock to a more accurate name,
i.e., Metadata.depositTimestamp

STBL: Fixed in commit c540943.
Cyfrin: Verified.

20

https://github.com/USD-Pi-Protocol/contract/commit/c54094363b196b534c9c36d563851dff31fe2975
https://github.com/USD-Pi-Protocol/contract/blob/main/contracts/lib/STBL_Structs.sol#L26-L27
https://github.com/USD-Pi-Protocol/contract/blob/main/contracts/Assets/LT1/STBL_LT1_Issuer.sol#L351
https://github.com/USD-Pi-Protocol/contract/commit/c54094363b196b534c9c36d563851dff31fe2975

7.3.4 CEl pattern violation in STBL_PT1_Vault: :withdrawFees

Description: The STBL_PT1_Vault: :withdrawFees function violates the Checks-Effects-Interactions (CEI) pattern
by performing external token transfers before resetting the fees to 0.

The function resets fee counters (VaultData.depositFees, VaultData.withdrawFees, etc.) to zero after executing
the safeTransfer () call to the treasury. It is notable that this function has no access control.

Recommended Mitigation: Consider implementing a proper CEl pattern. Emit the event, reset counters and then
make the transfer.

STBL: Acknowledged.
Cyfrin: Acknowledged.

7.3.5 Misleading inline comment in STBL_LT1_Issuer::withdrawExpired function

Description: The STBL_LT1_Issuer::withdrawExpired function contains a misleading inline comment that di-
rectly contradicts the actual code logic and intended functionality.

function withdrawExpired(uint256 _tokenID) external isSetupDone {
// ... validation checks ...

> //ensures that protocol can't withdraw after duration has passed //@audit incorrect comment
if ((MetaData.depositBlock + MetaData.Fees.duration) > block.timestamp)
revert STBL_Asset_WithdrawDurationNotReached(assetID, _tokenID);

// ... withdrawal logtic ...

The comment states: "ensures that protocol can't withdraw after duration has passed". However, the actual code
logic does the exact opposite.

Also, the revert in the iWithdraw function is misleading:

if ((MetaData.depositBlock + MetaData.Fees.duration) < block.timestamp)
revert STBL_Asset_WithdrawDurationNotReached(assetID, _tokenID);
//@audit should revert when withdraw duration has ezpired

Recommended Mitigation: Consider updating the inline comment to accurately reflect the code logic. Also
consider replacing the error STBL_Asset_WithdrawDurationNotReached in iWithdraw to STBL_Asset_Withdraw-
DurationExpired.

STBL: Fixed.
Cyfrin: Fixed.

7.3.6 Anybody can deposit and withdraw on behalf of users

Description: Issuer contracts allow anybody to call deposits and withdrawals on behalf of any account, without
restrictions.

While no way was found to leverage this to perform a more harmful attack, it is still not ideal that anybody can
operate on behalf of other users without their approval.

While the approval of the underlying collateral is required for deposits, it is not uncommon for users to grant infinite
allowance through wallet Ul's. So anybody could re-deposit assets once the user withdraws them or as soon as
the user gets any of those assets in their balance.

For withdrawals, users' assets could be withdrawn before the asset's owner meant to withdraw them.

Recommended Mitigation: Consider whitelisting operators who can call on behalf of depositor/withdrawer in-
stead of allowing anyone.

21

STBL Acknowledged. This is by design to facilitate integration by other protocols.
Cyfrin: Acknowledged.

22

7.4 Gas Optimization

7.4.1 Unnecessary usage of _msgSender () to validate if caller is the Issuer on the STBL_PT1_YieldDis-
tributor

Description: On the STBL_PT1_YieldDistributor contract, the functions enableStaking() and disableStak-
ing () use the modifier isIssuer() to validate if the caller is the authorized issuer of the assetId configured for
the YieldDistributor.

STBL_PT1_YieldDistributor.isIssuer() calls the internal _msgSender () which calls
ERC2771ContextUpgradeable. _msgSender () and eventually will call ContextUpgradeable. _msgSender ().

It is more optimal to use msg.sender than having the execution go through the ERC2771ContextUpgradeable. _-
msgSender () because the TrustedForwarder won't be the YieldDistributor, the issuer makes a direct call to
the YieldDistributor.

modifier isIssuer() {
AssetDefinition memory AssetData = registry.fetchAssetData(assetID);
@> if (!AssetData.isIssuer(_msgSender()))
revert STBL_Asset_InvalidIssuer(assetID);

function _msgSender ()
internal
view
override (ERC2771ContextUpgradeable)
returns (address)

@> return ERC2771ContextUpgradeable._msgSender();

The same applies for distributeReward():

function distributeReward(uint256 reward) external {

@> if (!AssetData.isVault(_msgSender()))
revert STBL_Asset_InvalidVault(assetID);

IERC20(AssetData.token) .safeTransferFrom(
> _msgSender (),
address(this),
reward

)

Recommended Mitigation: Consider using msg. sender instead of calling _msgSender ()
STBL: Fixed in commit c540943
Cyfrin: Verified.

23

https://github.com/USD-Pi-Protocol/contract/commit/c54094363b196b534c9c36d563851dff31fe2975

	About Cyfrin
	Disclaimer
	Risk Classification
	Protocol Summary
	Audit Scope
	Executive Summary
	Findings
	Medium Risk
	Incorrect haircut asset value conversion in STBL_PT1_Issuer::generateMetaData
	High centralization risk in STBL_USST::bridgeBurn
	Front-running attack on yield distribution allows potential theft of accumulated rewards
	Arithmetic underflow in withdrawERC20 when there is a negative rebasing of asset tokens

	Low Risk
	Missing zero address checks in STBL_Register::setupAsset
	Insufficient fee validation in STBL_Register::setupAsset can cause underflow
	Insufficient duration validation in STBL_Register::setupAsset can lock user withdrawals
	Disabling an asset via STBL_Register::disableAsset with active deposits can DOS user withdrawals
	STBL_Register::addAsset does not check for non-empty asset name
	Race condition at duration expiration boundary during withdrawals
	Treasury cannot withdraw expired assets if NFT is disabled

	Informational
	Misleading ContractType field suggests that assets can be non ERC20 tokens
	Missing event emissions for critical oracle parameter changes
	Mismatching variable naming for Metadata.depositBlock
	CEI pattern violation in STBL_PT1_Vault::withdrawFees
	Misleading inline comment in STBL_LT1_Issuer::withdrawExpired function
	Anybody can deposit and withdraw on behalf of users

	Gas Optimization
	Unnecessary usage of _msgSender() to validate if caller is the Issuer on the STBL_PT1_YieldDistributor

